Liquid–Liquid and Vapor–Liquid Phase Equilibria for 1-Butanol + Water + 2-Propanol at Ambient Pressure

T. Aicher, T. Bamberger,[†] and E.-U. Schlünder*

Institut für Thermische Verfahrenstechnik, Universität Karlsruhe (TH), D-76128 Karlsruhe, Germany

The liquid-liquid and the vapor-liquid phase equilibria of the ternary system 1-butanol + water + 2-propanol have been measured at ambient pressure. Compositions along the binodal curve have been determined gravimetrically at 0, 20, 50, and 60 °C. The lines were determined for 0, 20, and 60 °C. The data were compared to reported measurements at 80 °C. Furthermore, the vapor-liquid equilibrium at ambient pressure has been measured for both one-phase and two-phase liquid mixtures using a recirculation still proposed by Röck and Sieg.

Introduction

The system 1-butanol + water + 2-propanol is used for the investigation of the convection drying of porous media wetted with a liquid mixture that is not entirely miscible. This system is appropriate since it has a large miscibility gap. To elucidate the mechanisms and come up with a quantitative model to describe the drying process, information about the phase equilibrium of the above system is necessary. Therefore, the binodal curve has been measured at 0, 20, 50, and 60 °C, and tie lines have been measured at 0, 20, and 60 °C. Additionally, the vapor-liquid equilibrium has been determined for 80 different one-phase and 16 two-phase mixtures.

Experimental Section

Both organic components, 1-butanol and 2-propanol, were supplied by Carl Roth GmbH & Co., Karlsruhe. 1-Butanol was obtained at $\geq 99.5\%$ p.a. purity and 2-propanol at ≥ 99.9 mass % purity. They were used without further purification. The water was distilled twice.

For the gravimetric determination of the composition along the binodal curve, an electronic balance, Sartorius LC 1200 S, measuring to 0.001 g was used. To determine the tie lines and the vapor-liquid equilibrium, the compositions of the mixtures were measured with a Perkin-Elmer Sigma I gas chromatograph with a packed column (Perkin-Elmer Poropak QS) and an FID detector. The compositions were measured with an accuracy of 0.1 mol %. The carrier gas used was helium. The oven temperature was increased from 100 to 200 °C according to a temperature program. To obtain the chromatographic response factors, standard mixtures were analyzed.

Temperatures were measured with a mercury-in-glass thermometer with an accuracy of 0.1 K. For the vaporliquid equilibrium measurements, the local pressure was determined with a mercury manometer.

Liquid–Liquid Equilibrium at 0, 20, 50, 60, and 80 $^\circ C$

Experimental Procedure. The compositions along the binodal curve were determined as follows. A 100 g portion of a two-phase mixture of 1-butanol and water with the content of 1-butanol in the range of mass fractions from 0.07 to 0.90 was weighed. The temperature of the mixture

was set to the system temperature in a water bath and kept within 0.1 K. Sufficient 2-propanol to dissolve the two-phase mixture at the system temperature was added by titration. The mass added was noted and the composition (mass fraction) calculated. This was done for at least 10 mixtures at 0, 20, 50, and 60 °C.

The tie lines were determined by making up mixtures with overall compositions lying within the two-phase region, and after being shaken well and allowed to settle at the system temperature (water bath), samples were carefully taken from each phase and their compositions analyzed in the gas chromatograph.

Vapor-Liquid Equilibrium at Ambient Pressure

Experimental Setup. The vapor-liquid equilibrium measurments were carried out in an all-glass equilibrium still with circulation of both the vapor and the liquid phase. An apparatus of this type was proposed first by Gillespie (5). The measurements were performed in an apparatus of this type as modified by Röck and Sieg (6). The apparatus is shown in a schematic diagram (Figure 2) and described in the following. The boiling flask (2) is heated electrically by a jacketed heater (1). The flask (2) is filled to the Cottrell pump (3) with the liquid mixture. The arising vapor bubbles agitate the liquid in the flask on their way up and entrain liquid drops while passing the Cottrell pump. This provides good mixing between the liquid and the vapor phase. The vapor entrains the liquid up to point 4, where the two phases separate from each other. The liquid is collected in the receiver (10), from where it flows back into the boiling flask. Small liquid drops that still might be carried along in the rising vapor are retained by the shield (5). The vapor is condensed totally in a water-cooled coil (6). After passing point 7, the condensate is collected at point 8 and returned to the flask. Before entering the flask, the condensate and the liquid from the receiver (10) mix at point 9, where they are heated again by thermostated oil in a jacket. The boiling flask, the Cottrell pump, and the rest of the apparatus containing vapor are also thermostated within ± 0.1 K by oil circulating in a jacket. The temperature of the the oil is kept up to 0.1 K higher than the equilibrium temperature to prevent partial condensation in the vapor chamber.

For measuring the equilibrium of a two-phase mixture, two tiny electrical motors are installed on openings of the still over the liquid-phase and the condensed-vapor-phase collectors (10 and 8 respectively). Each motor moves an

^{*} To whom correspondence should be addressed.

⁺ Now with BAYER AG, Leverkusen, Germany.

Figure 1. Binodal curves of the system 1-butanol + water + 2-propanol at 0, 20, 50, 60, and 80 °C and ambient pressure: (\triangle) 0 °C, (\bigcirc) 20 °C, (\Box) 50 °C, (\bigcirc) 60 °C, (\odot) 80 °C.

Figure 2. Schematic diagram of the equilibrium still: (1) electrical jacketed heater, (2) boiling flask, (3) Cottrell pump, (5) shield, (6) water-cooled coil, (8) condensed-vapor-phase collector, (10) liquid-phase collector, (4, 7, and 9) described in the text.

excenter disk which is connected to the upper end of a long metal rod with a metal plate welded to its lower end. The metal plate is emerged in the liquid. By its upand-down movement the two liquid phases become homogeneous. Thus, it is possible to draw representative samples.

Experimental Procedure. The liquid mixture (300 mL) was poured slowly into the flask. The electrical heating was set to such a power input that the liquid just started boiling. This was done in order to have sufficient circulation and a minimal risk of overheating. The vapor temperature is determined using a mercury-inglass thermometer (0.1 K divisions). It was assumed that equilibrium was reached after the vapor temperature was constant for 60 min. Then, samples were drawn with a syringe. The removed liquid was replaced by adding

Table 1. Mass Fractions w along the Binodal Curve for 1-Butanol (1) + Water (2) + 2-Propanol (3) at 0, 20, 50, 60, and 80 °C and Ambient Pressure

	e una masie	iit i ressure		
t/°C	w_1	w_2	w_1	w_2
0	0.0992	0.9008ª	0.6849	0.2283
	0.0845	0.8051	0.7405	0.2088
	0.0877	0.7896	0.7613	0.2024
	0.1640	0.6558	0.7725	0.1992
	0.2397	0.5594	0.7822	0.1955
	0.3893	0.3893	0.8069	0.1931ª
	0.6017	0.2579		
20	0.0781	0.9219^{b}	0.3988	0.3988
	0.0736	0.8462	0.4908	0.3273
	0.0818	0.8264	0.5476	0.2949
	0.0890	0.8012	0.6112	0.2620
	0.1223	0.7460	0.6738	0.2368
	0.1291	0.7316	0.6898	0.2300
	0.1687	0.6749	0.7057	0.2228
	0.1854	0.6517	0.7449	0.2101
	0.2448	0.5712	0.7671	0.2039
	0.3205	0.4806	0.7993	0.2007^{b}
50	0.0646	0.9354°	0.6306	0.2703
	0.0674	0.8948	0.6793	0.2513
	0.0710	0.8755	0.7200	0.2400
	0.0909	0.8177	0.7368	0.2327
	0.1721	0.6886	0.7622	0.2277
	0.2502	0.5840	0.7758	0.2242^{c}
	0.4083	0.4083		
60	0.0652	0.9348^{c}	0.4578	0.3815
	0.0723	0.8844	0.4995	0.3563
	0.0923	0.8309	0.5549	0.3182
	0.1737	0.7001	0.6482	0.2783
	0.2537	0.5928	0.7357	0.2458
	0.3453	0.4845	0.7638	0.2362°

^a Reference 2. ^b Reference 3. ^c Reference 4.

Table 2. Determination of the Tie Lines for 1-Butanol (1)+ Water (2) + 2-Propanol (3)

	water rich phase		alcohol rich phase		
t/°C	w_1	w_2	w_1	w_2	
0	0.085	0.885	0.733	0.212	
	0.084	0.865	0.662	0.238	
	0.085	0.825	0.565	0.277	
	0.088	0.811	0.500	0.313	
	0.089	0.783	0.425	0.365	
20	0.071	0.906	0.714	0.223	
	0.073	0.881	0.634	0.258	
	0.085	0.838	0.531	0.308	
60	0.074	0.908	0.671	0.268	
	0.083	0.865	0.562	0.312	
	0.095	0.834	0.459	0.385	

an equal amount of liquid, so that the overall composition was changed. The compositions of the samples of the liquid and the condensed vapor are determined using the gas chromatograph. In the case of the two-phase samples methanol was added until the mixture became homogeneous.

Results

The data for the phase diagram of 1-butanol + water + 2-propanol are given in Table 1. Additionally, data measured at 80 °C from ref 1 are listed. The data for the binary mixture 1-butanol + water were taken from ref 2 for 0 °C, from ref 3 for 20°C, and from ref 4 for all other temperatures. In Table 2, the raw data for the tie lines are shown.

For easier comparison of the measured data with the data cited from the literature, all the binodal curves are shown on the triangular diagram, Figure 1, where the compositions are plotted as mass fractions. A qualitative comparison confirms that the tendency of the miscibility gap to become smaller with increasing temperature is continued by the reported data at 80 °C (1).

Table 3. Liquid x and Vapor y Mole Fractions for One-Phase Systems at Ambient Pressure for 1-Butanol (1) + Water (2) + 2-Propanol (3)

p/MPa	t/°C	<i>x</i> ₁	<i>x</i> ₂	<i>y</i> 1	y_2	p/MPa	t/°C	x_1	x_2	<i>y</i> 1	<i>y</i> 2
0.099 29	87.3	0.3560	0.0408	0.1104	0.0986	0.09995	98.9	0.6414	0.0067	0.3396	0.0137
0.099 95	87.8	0.3020	0.1463	0.1248	0.1799	$0.100\ 77$	101.6	0.7066	0.0109	0.4064	0.0298
$0.100\ 35$	95.3	0.5498	0.0307	0.2675	0.0682	$0.100\ 77$	102.5	0.7382	0.0087	0.4487	0.0258
$0.100\ 35$	92.1	0.4646	0.0253	0.1859	0.0531	0.100 93	92.2	0.4433	0.0148	0.1699	0.0217
$0.099\ 82$	89.7	0.3421	0.0258	0.1400	0.0513	0.100 86	91.6	0.4239	0.0101	0.1591	0.0205
0.099 82	88.9	0.3240	0.0286	0.1153	0.0484	$0.100 \ 81$	83.0	0.1175	0.4970	0.0443	0.4722
0.099 70	87.9	0.2980	0.0507	0.1061	0.0531	$0.100\ 77$	83.6	0.0838	0.6680	0.0451	0.5158
0.099 94	86.5	0.2926	0.0295	0.0953	0.0525	0.100 69	84.3	0.0663	0.7595	0.0547	0.5480
0.099 33	110.4	0.8812	0.0151	0.7170	0.0198	$0.100\ 85$	89.1	0.4292	0.4505	0.1745	0.5628
0.100 4 9	107.1	0.8151	0.0132	0.5836	0.0344	0.100 81	90.9	0.4793	0.3620	0.2127	0.5471
$0.104\ 07$	105.5	0.7922	0.0148	0.5390	0.0346	$0.100\ 77$	89.8	0.4871	0.3096	0.1859	0.4933
0.099~74	102.5	0.7200	0.0165	0.4426	0.0394	$0.100\ 09$	82.0	0.0800	0.3994	0.0312	0.4049
0.099 70	101.4	0.7088	0.0131	0.4219	0.0348	0.099 86	82.6	0.1281	0.3809	0.0481	0.4157
$0.099\ 61$	97.1	0.5821	0.0052	0.2963	0.0337	$0.100\ 59$	84.2	0.1389	0.4080	0.0726	0.4214
0.099~61	96.6	0.5908	0.0150	0.2714	0.0318	$0.100\ 55$	85.9	0.2387	0.3406	0.1079	0.4311
$0.100\ 24$	95.6	0.5592	0.0211	0.2541	0.0541	$0.100\ 51$	87.4	0.3963	0.2783	0.1364	0.4544
$0.100\ 05$	116.3	0.9868	0.0051	0.9589	0.0149	0.100.86	90.0	0.5244	0.2369	0.1930	0.4772
$0.100\ 23$	109.8	0.8880	0.0087	0.6995	0.0306	$0.100\ 82$	91.4	0.5887	0.2045	0.2260	0.4636
$0.100\ 30$	108.1	0.8558	0.0096	0.6357	0.0326	$0.100\ 82$	92.4	0.6276	0.1802	0.2413	0.4581
$0.100\ 54$	113.3	0.9482	0.0105	0.8345	0.0229	0.100 79	93.6	0.6261	0.1880	0.2817	0.4416
$0.100\ 59$	110.4	0.8969	0.0080	0.7157	0.0245	0.10075	92.5	0.6207	0.2304	0.2545	0.5188
0.101 50	107.5	0.8292	0.0074	0.5925	0.0173	0.100 83	82.7	0.1240	0.1187	0.0414	0.1753
$0.101 \ 45$	105.4	0.8013	0.0084	0.5332	0.0185	0.100 81	81.9	0.1320	0.1664	0.0339	0.2710
0.101.38	102.0	0.7134	0.0095	0.4126	0.0176	0.100 79	81.6	0.1124	0.3114	0.0301	0.3536
0.101.38	99.4	0.6452	0.0078	0.3449	0.0195	0.100 70	86.8	0.1741	0.6421	0.1241	0.5914
$0.100 \ 31$	93.2	0.4732	0.0097	0.1987	0.0171	0.099 41	86.8	0.2135	0.6201	0.1205	0.5916
0.100 62	89.1	0.3413	0.0102	0.1111	0.1060	$0.100\ 51$	88.1	0.2118	0.6472	0.1639	0.6342
0.100.66	87.0	0.2921	0.0099	0.0745	0.0149	0.10002	85.2	0.0188	0.9169	0.0666	0.5655
0.100.65	83.0	0.0428	0.0092	0.0150	0.0145	0.099 95	85.9	0.0320	0.9061	0.0925	0.5843
0.100 63	82.9	0.0664	0.0076	0.0143	0.0117	0.100 06	93.4	0.5270	0.0260	0.2215	0.0753
0.100 62	84.1	0.1229	0.0101	0.0331	0.0142	0.10005	94.5	0.5575	0.0269	0.2467	0.0722
0.100 58	83.8	0.1198	0.0095	0.0268	0.0137	0.099 99	95.9	0.5924	0.0248	0.2811	0.0683
$0.100\ 54$	84.4	0.1400	0.0093	0.0366	0.0140	0.099 95	94.2	0.5040	0.0097	0.2281	0.0111
0.100 49	85.3	0.1765	0.0091	0.0489	0.0146	0.100 09	94.6	0.5326	0.0119	0.2408	0.0272
0.100 46	85.8	0.1904	0.0097	0.0587	0.0162	0.100 07	95.6	0.5679	0.0120	0.2645	0.0256
0.100 67	86.6	0.2436	0.0103	0.0745	0.0188	0.100 06	96.6	0.6007	0.0101	0.2939	0.0261
0.100 38	105.4	0.7884	0.0039	0.5205	0.0105	0.100 03	98.4	0.6512	0.0083	0.3447	0.0209
0.100 33	103.1	0.7415	0.0042	0.4549	0.0099	0.099 90	94.1	0.5141	0.0069	0.2201	0.0132
0.100 03	92.1	0.4553	0.0058	0.1748	0.0124	0.099 86	95.5	0.5422	0.0055	0.2772	0.0153
0.10002	93.2	0.4919	0.0052	0.2019	0.0114	0.099 90	96.8	0.5873	0.0073	0.2914	0.0130
0.099 90	95.3	0.5483	0.0066	0.2443	0.0118	0.099 93	98.4	0.6353	0.0054	0.3244	0.0124
0.099 91	96.7	0.5920	0.0070	0.2800	0.0159	0.100 59	91.7	0.4502	0.5163	0.2471	0.7043

Table 4. Liquid x and Vapor y Mole Fractions for Two-Phase Systems at Ambient Pressure for 1-Butanol (1) + Water (2) + 2-Propanol (3)

p/MPa	$t/^{\circ}\mathrm{C}$	x_1	x_2	<i>y</i> 1	\mathcal{Y}_2
0.100 33	90.5	0.2314	0.7240	0.2276	0.6847
0.100 39	90.6	0.2180	0.7450	0.2320	0.6813
0.100 49	90.7	0.1763	0.7965	0.2103	0.7118
$0.100\ 55$	90.8	0.1569	0.8184	0.2161	0.7100
$0.100\ 97$	90.8	0.1872	0.7854	0.2094	0.7172
0.100 99	90.9	0.1921	0.7811	0.2150	0.7189
0.100 99	90.0	0.1263	0.8356	0.1921	0.6878
0.100 99	90.4	0.1226	0.8474	0.2075	0.6882
$0.101\ 03$	91.6	0.3692	0.6060	0.2491	0.7101
$0.101\ 01$	91.4	0.2827	0.6962	0.2384	0.7192
0.100 94	91.4	0.2745	0.7074	0.2362	0.7217
$0.100\ 86$	91.4	0.3100	0.6677	0.2359	0.7223
$0.100\ 83$	91.5	0.2891	0.6919	0.2479	0.7129
$0.100\ 58$	91.5	0.2815	0.6991	0.2375	0.7231
$0.100\ 50$	91.5	0.2079	0.7777	0.2326	0.7336
$0.100\ 42$	91.6	0.1548	0.8367	0.2383	0.7352

In Table 3 the vapor-liquid equilibrium data for the ternary system 1-butanol + water + 2-propanol in the onephase state are listed. The first column gives the pressure (MPa), the second gives the boiling temperature ($^{\circ}C$), the next two give the composition of the liquid phase in mole fraction, and the last two give the composition of the vapor, again in mole fraction. The data for the two-phase state are given in Table 4. The columns are in the same order as those in Table 3. The liquid compositions are overall compositions of the two liquid phases.

Acknowledgment

The experimental work of R. Landmann, H.-J. Tarara, and E. Zimmermann is gratefully acknowledged.

Literature Cited

- Morozov, A. V.; Sarkisov, A. G.; Turovskii, V. B.; Ilyaskin, K. I. Zh. Fiz. Khim. 1978, 52, 1821.
- (2) Fühner, H. Ber. Dtsch. Chem. Ges. 1924, 57, 510.
- (3) Mahers, E. G.; Dawe, R. A. Chem. Eng. Data 1986, 31, 28.
- (4) Hill, A. E.; Malisoff, W. M. J. Am. Chem. Soc. 1926, 48, 918.
- (5) Gillespie, D. T. Ind. Eng. Chem., Anal. Ed. 1946, 18, 29.
- (6) Röck, H.; Sieg, G. Z. Phys. Chem. (Frankfurt/Main) 1955, 3, 355.

Received for review December 7, 1994. Accepted February 28, 1995.*

JE940266J

[®] Abstract published in Advance ACS Abstracts, April 1, 1995.